Comparing fMRI Activity Maps from GLM and CCA at the Same Significance Level by Fast Random Permutation Tests on the GPU

نویسندگان

  • Anders Eklund
  • Ola Friman
  • Mats Andersson
  • Hans Knutsson
چکیده

Parametric statistical methods are traditionally employed in functional magnetic resonance imaging (fMRI) for identifying areas in the brain that are active with a certain degree of statistical significance. These parametric methods, however, have two major drawbacks. First, it is assumed that the observed data are Gaussian distributed and independent; assumptions that generally are not valid for fMRI data. Second, the statistical test distribution can be derived theoretically only for very simple linear detection statistics. In this work it is shown how the computational power of the Graphics Processing Unit (GPU) can be used to speedup non-parametric tests, such as random permutation tests. With random permutation tests it is possible to calculate significance thresholds for any test statistics. As an example, fMRI activity maps from the General Linear Model (GLM) and Canonical Correlation Analysis (CCA) are compared at the same significance level.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving CCA based fMRI Analysis by Covariance Pooling - Using the GPU for Statistical Inference

Canonical correlation analysis (CCA) is a statistical method that can be preferable to the general linear model (GLM) for analysis of functional magnetic resonance imaging (fMRI) data. There are, however, two problems with CCA based fMRI analysis. First, it is not feasible to use a parametric approach to calculate an activity threshold for a certain significance level. Second, two covariance ma...

متن کامل

Fast Random Permutation Tests Enable Objective Evaluation of Methods for Single-Subject fMRI Analysis

Parametric statistical methods, such as Z-, t-, and F-values, are traditionally employed in functional magnetic resonance imaging (fMRI) for identifying areas in the brain that are active with a certain degree of statistical significance. These parametric methods, however, have two major drawbacks. First, it is assumed that the observed data are Gaussian distributed and independent; assumptions...

متن کامل

fMRI analysis on the GPU - Possibilities and challenges

Functional magnetic resonance imaging (fMRI) makes it possible to non-invasively measure brain activity with high spatial resolution. There are however a number of issues that have to be addressed. One is the large amount of spatio-temporal data that needs to be processed. In addition to the statistical analysis itself, several preprocessing steps, such as slice timing correction and motion com...

متن کامل

Evaluation of Sensory Pathways in Spinal Cord by Comparison of fMRI Methodologies

Introduction: Today, clinicians and neuroscientists need to have a comprehensive survey of neurological pathologies and injuries. For the First-time, SEEP contrast and Spin-Echo pulse sequences was used for functional imaging of the Lumbar spinal cord. This method used by several research groups for Spinal cord mapping, but other researchers tried to improve BOLD fMRI to Spina...

متن کامل

Computational Medical Image Analysis : With a Focus on Real-Time fMRI and Non-Parametric Statistics

Functional magnetic resonance imaging (fMRI) is a prime example of multidisciplinary research. Without the beautiful physics of MRI, there would not be any images to look at in the first place. To obtain images of good quality, it is necessary to fully understand the concepts of the frequency domain. The analysis of fMRI data requires understanding of signal processing, statistics and knowledge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011